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Surface Roughness Effects in Low Reynolds Number
Channel Flows
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∗ERC, Inc., CA 93524
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Abstract. Rarefied helium and nitrogen flow expanding into vacuum through 150µm high and 1.5 cm long channels is studied
experimentally and numerically with the DSMC method. Different types of channel walls are examined, both polished and
rough with well characterized roughness shaped as triangles and rectangles. The pressure varies from 200 to 13,000 Pa, with
the gas mean free path being both much larger and much smaller than the roughness size of about 20µm. A conical surface
roughness model applicable for the DSMC method is proposed. An expression relating this model to the Cercignani-Lampis
scattering model is derived. Good agreement between the numerical and experimental results is observed for the rough walled
channel.
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PACS: 51.10.+y, 51.90.+r

INTRODUCTION

Surface roughness plays a significant role for a number of gas dynamic problems. Traditionally, the surface structure
and roughness are important in low-speed microflows, where the surface-to-volume ratio is high and surface effects
dominate the gas flow. One example is the contribution of surface roughness to the resistance of gas channel flows
currently drawing significant interest from researchers [1]. In addition to low-speed gas flows, the surface roughness
effect may be significant in a number of high-speed flows [2]. This is true not only for micro-scale high-speed flows,
where the roughness characteristic size becomes comparable to the flow dimensions, but also for large scale flows,
where the local rarefaction may be observed even in flows that are generally in continuum regime.

Numerical modeling of the surface roughness effects in rarefied gas flows encounters a number of problems, from the
difficulty of accurate description of complex surface shapes and roughness patterns, to the uncertainties of numerical
validation. The description of rough surfaces has been approached before, both using simplified models such as cone
models [3, 4] as well as more sophisticated models such as fractals models [5, 6]. The conical roughness model [4]
where the surface is represented by a number of virtual cones has been applied to model the flow conductance in
channels with the direct simulation Monte Carlo method, and the results were compared with available experimental
data. It is not clear however whether the model satisfies detailed balance principle at equilibrium. The fractal model
[6] is much more general, although still needs to be validated for rarefied gas flows.

The problems of validation of numerical models of surface roughness are related not only to the challenges of
reliable and accurate measurement of low speed rarefied flows, but also to the physical complexities associated with
gas-surface collisions. The related experimental studies of surface roughness are the work by Sugiyama et al [7] where
triangular roughness in channel flows was studied numerically and experimentally for large Knudsen numbers and
by Turner et al [8] where the surface roughness was found to have small effect on gas pressures inside a channel for
several pressure ratios.

The accommodation of gas molecules is different for different angles of incidence [9], gas temperatures, surface
temperatures, surface material and cleanliness. An additional process that may affect the flow in long microchannels
is the variation of accommodation with local gas pressure via coverage dependence. In most cases, the probability
of surface sticking/adsorption (and resulting near-complete thermal accommodation) decreases as the availability of
surface sites decreases. Lundstrom [10] observed the surprising result that Knudsen flow diffusion increased with
backing pressure. This was hypothesized to be due to the variation in sticking with local gas density and a tendency of
molecules to scatter more specularly off adsorbed molecules than off the bare wall.
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Additional complexity of the surface roughness modeling is associated with the fact that in gaseous microflows,
where the pressures are typically on the order of one atmosphere, and the mean free path is several tens of nanometers,
the Knudsen number based on the characteristic roughness size varies significantly. The main objective of this
paper is the numerical and experimental study of the surface roughness effects in the two-dimensional channel flow
with well characterized surface roughness in the regimes from near free molecular to near continuum based on the
roughness size. A simple model of the surface roughness that maintains the detailed balance and is applicable to the
direct simulation Monte Carlo method is developed and its connection to the Cercignani-Lampis scattering kernel
is established. The model is used in the DSMC computations of a helium flow through a long channel expanding
into vacuum. The companion experimental study includes both nitrogen and helium mass flow measurements in the
pressure range from about 1 Torr to 100 Torr for a channel thickness of 150µm.

CONICAL MODEL OF SURFACE ROUGHNESS FOR PARTICLE APPROACHES

The process of collisions of molecules with a rough surface can be split into the following stages: a molecule hits
the wall at a certain point, experiences one or several collisions with the surface, and then leaves the wall. When the
characteristic size of the roughness is significantly less that the gas mean free path, no intermolecular collisions take
place during the second stage. The time for this stage is in this case much smaller than the mean collision time, and
the distance traveled along the wall is on the order of the roughness size. Therefore, this time and distance can be
ignored, and it is sufficient to specify only the reflected velocity of the molecule. The following approach is proposed
to calculate the velocity of the reflected molecule. The surface is presented as a number of virtual conical holes with
a fixed opening angle β and a height h randomly scattered over the actual surface. The after-collision velocity is
calculated through the following steps. First, the molecule is assumed to cross the base of the cone at a random point
A, as shown in Fig. 1s. Then, its subsequent collision point B with the side of the cone is calculated, and reflected
velocity according to the diffuse reflection law is selected. The process of finding collision points and selecting new
velocities is repeated until the molecule leaves the surface, that is, exits the conical hole through the base. Note again,
the reflection point is assumed to be the same as the initial approach point, therefore, the actual value of h is not
important (for example, h = 1m can be used). In this algorithm, there are no uncertainties associated with the cut-off
for very long traveling distances such as those in [3]. It can also be easily implemented in DSMC. With such a surface
shape simplification, there is only one parameter, namely average surface slope, that is used.
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FIGURE 1. (a) Schematic of molecule reflection from the wall. (b) Distribution function of the angle between the reflected
molecular velocity and flow direction, M=0.3, β = 66o.

To study the influence of the rough wall on the flow properties, let us now examine how the velocity distribution
function of the incident molecules is transformed by collisions with the wall. In what follows, the velocity distribution
function of the incoming molecules is assumed to be equilibrium at a flow velocity characterized by the Mach number
M and directed along x axis, where the wall is assumed to lie in xy plane. The distribution function of the angle
φ (0 < φ < π) between the reflected tangential molecular velocity and flow direction obtained using the reflection
algorithm described above is plotted in Fig. 1b (circles) for β = 66◦ and M=0.3. Note that the maximum of the
distribution function corresponds to the direction opposite to the flow direction, which is reasonable for a rough
surface that is generally expected to increase flow resistance.
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MODELING SURFACE ROUGHNESS USING CL SCATTERING KERNEL

Let us show that this distribution can be fitted by the distribution obtained with the Cercignani-Lampis (CL) [11],[12]
transformation of incident velocities. The analytical form of the distribution function obtained by using CL transfor-
mation is derived as follows. In what follows, it is assumed that the temperatures of the gas and the wall are equal, and
the velocities are normalized by

√
m/kT . Then, the distribution functions of x and y velocity components of incident

molecules are

f inc
x (v) =

1√
2π

exp(−(v−M
√

γ)2/2) and f inc
y (v) =

1√
2π

exp(−v2/2), (1)

respectively. After the CL transformation, the x component of the reflected velocity is equal to

vrefl
x =

1−αt√
|1−αt |

vinc
x + vCL

x , (2)

where the distribution function of vCL
x is given by

f CL
x (v) =

1√
2π(1−|1−αt |)

exp
(
− v2

2(1−|1−αt |)

)
. (3)

Here, αt is the CL parameter that corresponds to the tangential accommodation coefficient, 0≤ αt ≤ 2. Note that vrefl
x

is the sum of the two independent normally distributed variables, therefore, its distribution function can be written as

f (vrefl
x ) =

1
2π

exp


−

(
vrefl

x −M
√

γ
1−αt√
|1−αt |

)2

 . (4)

Similarly, it can be concluded that the distribution function of y velocity component does not change during CL

transformation. Note that tan(φ) =
|vrefl

y |
vrefl

x
, so for 0< φ < π/2 the distribution function of φ can be obtained with

f (tanφ) =

∞∫

0

ux f refl
x (ux) f refl

y (ux tanφ)dux (5)

and for π/2< φ < π

f (tanφ) =−
0∫

−∞

ux f refl
x (ux) f refl

y (ux tanφ)dux. (6)

Finally, the reflected velocity distribution function

fφ (φ) = 2 f (tanφ)(1 + tan2 φ) =
exp(−t2)

π
+

t cosφ√
π

exp
(
−t2 sin2 φ

)
(1 + erf(t cosφ)) , (7)

where t = 1−αt√
|1−αt |

M
√γ .

Parameter αt of the CL transformation can be found by least square fitting of φ distributions obtained using the
reflection algorithm described in section to Eq.(7). Figure 1b shows such a fit. αt is larger than 1, which means
that the average tangential momentum of the reflected molecules points in the opposite direction with respect to the
average tangential momentum of the incident molecules. αt = 1 corresponds to zero average momentum of reflected
molecules, and the bigger the difference between αt and 1, the bigger the average momentum of reflected molecules.

Figure 2a shows the values of αt found by a least square fit for M=0.3 and different cone opening angles. As
expected, αt is maximum for some intermediate value of cone opening angle. A large opening angle essentially means
that the surface is flat, so αt tends to 1 in this case. Also, αt decreases for small opening angles.

The value of αt only weakly depends on Mach number, which is illustrated in Fig. 2b, where αt is shown as a
function of the Mach number for two different opening angles, β = 120o and β = 66o (the latter one is used in the
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FIGURE 2. (a) αt as a function of cone opening angle β , M=0.3 (b) αt as a function of Mach number for two cone opening
angles.

experiments). This fact facilitates the use of the CL model in DSMC simulations, since the value of αt can be selected
depending on the degree of roughness of the surface, and not on flow properties.

The verification of the rough surface model has been performed for a two-dimensional thermal bath test case, with
the test gas being helium initially heated to 1000 K. The surface temperature was assumed constant at 300 K, and the
conical roughness model was used with a cone angle of 45 deg. The temporal temperature relaxation inside the test
box is illustrated in Fig. 3 for a cross section along the centerline. As particles collide with the surface, the temperature
decreases from its initial value to the equilibrium value of 300 K. This test case shows that the detailed balance
is maintained in the conical roughness model, and in may be used in DSMC modeling of gas flows. The present
numerical and experimental study concentrates on rarefied gas flows though a long channel into vacuum, and the flow
conditions and setup are given in the next sections.
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FIGURE 3. Temporal relaxation of gas temperature in a 300 K box. Time is in mean collision times τλ at 1000 K.

EXPERIMENTAL SETUP AND CONDITIONS

A flat polished surface, a regular triangular groove, and a regular square groove texture was tested during this
experiment. The details of tested geometries are summarized in Fig. 4. The 2 cm by 1.5 cm silicon texture inserts
were fabricated through standard MEMS processes. At the entrance and exit of the channel is a shelf between 1 and 5
features long; with approximately 800 features down the length of the channel, the influence of this shelf is negligible.
The inserts were placed in an aluminum holder and Teflon sheet assembly. The spacing between the two center Teflon
sheets determines the width of the channel while the thickness of these sheets determines the height. The design
dimensions for the channel are 1 cm wide, 150 microns high, and 1.5 cm long (the later being the flow direction). This
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assembly was then placed in one wall of a 3550 cm3 plenum, which acted as a stagnation chamber. Two inlet ports
and three pressure ports also penetrate the wall of the plenum.

FIGURE 4. Experimental specifications and setup.

The entire setup was then placed in the Collaborative High Altitude Flow Facility (CHAFF) at the University of
Southern California (USC) Chamber IV. The chamber is a 3 m diameter by 6 m long high vacuum chamber pumped by
a 1 m diameter diffusion pump capable of 25,000 L/s for nitrogen and 42,000 L/s for helium. The ultimate background
pressure of the chamber is 10−6 Torr with working pressures as high as 10−4 Torr. The stagnation pressure in the
plenum was tested between 1 and 100 Torr for both helium and nitrogen. Before and immediately after testing, the
assembly was analyzed in a Cambridge 360 Scanning Electron Microscope (SEM). The SEM images of three surfaces
under consideration are presented in Fig. 5. The assembly was measured to find the exact channel height with an
accuracy of 2 microns. A jeweler’s microscope with an accuracy of 25.4 microns was used to find the channel width.
The accuracy of the groove dimension measurements were 0.2 microns.

The mass flow of the test gas was monitored until the pressure in the plenum became constant. The data was recorded
and the mass flow adjusted to the next data point. This was conducted for both helium and nitrogen using Omega 1000,
100, 10, and 5 SCCM mass flow meters and MKS 100, 10, 1, and .2 Torr Baratrons.

FIGURE 5. SEM images of a polished channel (left), triangular grooves (center), and rectangular grooves (right).

NUMERICAL APPROACH

The DSMC-based software system SMILE [13] was used in all computations. A 2D capability of SMILE was used
in this work. The majorant frequency scheme was used to calculate intermolecular interactions. The intermolecular
potential was assumed to be a variable hard sphere. The conical roughness model has been implemented in SMILE
for the gas-surface interactions, and the following four surfaces were used in the computations: (i) fully diffuse flat
surface with complete energy and momentum accommodation; (ii) flat surface with the conical roughness and diffuse
accommodation on cone sides and an opening angle of 66◦ that corresponds to the experimental conditions; (iii) CL
model with a tangential momentum accommodation coefficient of 1.045 to approximate (ii); (iv) a diffuse surface that
consists of about 800 triangles and approximate the actual experimental shape.

The channel height and length were 150 µm and 1.5 cm, respectively. Helium was used as the test gas, and the
chamber pressure varied from 200 Pa to 13,000 Pa. The Knudsen number based on the stagnation conditions and the
feature size of about 20µm ranged from about 5 down to 0.1. The convergence study computations were performed
for 6000 Pa and two inflow boundaries, the first extending 1700µm from the channel entrance and 1700µm from the
symmetry plane, the other 850 by 850µm, respectively. The Maxwellian distribution function with zero flow velocity
was assumed at these boundaries; no impact of the boundary location on the results was found. The larger domain was
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used in all subsequent computations, with the number of molecules ranging from about 1.6 million for the smaller
pressures to about 10 million for the larger ones.

RESULTS AND DISCUSSION

Consider first the results of the DSMC modeling of a helium flow inside a two-dimensional channel. The distribution
of pressure and Mach number along the channel is shown in Fig. 6a for the smallest and the largest pressures under
consideration and a fully diffuse flat surface. For the stagnation pressure of 200 Pa, the local Knudsen number based
on the channel height increases from about 1 to 100, and for this essentially free molecular flow the gas pressure
decreases linearly from the stagnation value, P0, to about 0.01P0 at the channel exit. The Mach number is below 0.05
for most of the channel, except for the vicinity of the exit where it increases to 1. As expected, the Mach number is
higher for the larger pressure, but still mostly less than 0.1.

The calculated mass flow as a function of stagnation pressure is given in Fig. 6b for four surface models under
consideration. Several conclusions can be drawn from these results. First, the surface roughness results in decreasing
the mass flow by about 30% for 200 Pa, and then the difference decreases to about 6% for 10,000 Pa. Second, the CL
model with αt = 1.045 agrees with the conical roughness model within two percent for lower pressures and less than
one percent for higher pressures. Finally, the results for the two surface roughness models are in good agreement with
the results for the triangulated surface, thus providing additional verification for the roughness models.
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FIGURE 6. (a) Pressure normalized by the stagnation value and Mach number profiles along the channel centerline for two
stagnation pressures. (b) Computed mass flow for different surface models.

The experimental results for three surfaces under consideration are presented in Fig. 7 for two gases. The results
provide evidence for significant reduction in mass flow for rough surface channels both for helium and nitrogen. This
result may appear contradicting to the conclusions of [8], but it may be explained by much larger (flatter) roughness
angles used in [8] than that examined in this work. Although the impact of surface roughness at each given pressure
is larger for helium than for nitrogen, it is similar if mass flow is plotted as a function of Knudsen number. The
rectangular grooves result in mass flows higher than those for triangles, especially for the nitrogen flow, where they
are relatively close to the flat surface case.

Let us now compare the experimental and numerical results on helium mass flow for smooth and rough surfaces.
There is a good agreement between the results, with the numerical values being within the experimental error bar,
estimated at about 10% for 200 Pa and less than 2% for 10,000 Pa, based on standard deviation. The only exception
is at high pressures for the flat surface, where the DSMC results are over 4% lower than the measured points. There
are three effects that may cause the difference between the numerical and experimental results: the side walls (three-
dimensionality), surface specularity, and surface absorption.

The absence of the side walls in DSMC may result in overprediction of the mass flow, especially for lower pressures
[14]. This effect may also be responsible for a slight difference between the experiment and DSMC for the rough
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FIGURE 7. Measured mass flow through channel for helium (left) and nitrogen (right).

surface. On the other hand, a polished surface considered in the experiments may have some finite specularity not
included in the numerical modeling, that would generally increase numerical values. The effect of surface absorption
may increase with gas pressure. Although the magnitude of the effect of increasing adsorption leading to lower overall
accommodation at higher pressure is difficult to estimate, it will lead to some increase in flow at higher pressure and
could be another explanation of the data trend for the flat surface.
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FIGURE 8. Comparison of computed (lines) and measured (symbols) mass flows for smooth and rough surfaces. Helium flow.

CONCLUSIONS

Rarefied gas flow expanding into vacuum through long channels with smooth or rough walls was examined experi-
mentally and numerically with the DSMC method. Two gases, helium and nitrogen, were considered, with stagnation
pressures varied from 200 Pa to 13,000 Pa for a 150µm high and 1.5 cm long channel. A conical surface roughness
model applicable for the DSMC method was suggested and used in this work. An expression relating this model to
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the Cercignani-Lampis scattering model is found, and reflected particle velocity distribution for the two models was
shown to be close when the tangential accommodation coefficient is chosen appropriately. A significant impact of the
surface roughness on mass flow through a channel was observed both experimentally and numerically. The mass flow
in a rough channel is lower than that of a polished surface channel, with the difference amounting to 6% for larger
pressures and 30% for smaller pressures. A good agreement between the numerical and experimental results is ob-
tained for a rough surface channel, thus validating the conical roughness model. Experimental slope of the mass flow
as a function of pressure for a flat plate is somewhat higher than that in DSMC, with the difference attributed to the
effects of the flow three-dimensionality, specularity, and surface coverage.
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